sovereignx/tools/aif2pcm/main.c
2022-09-13 16:26:36 -03:00

945 lines
23 KiB
C

// Copyright(c) 2016 huderlem
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <limits.h>
/* extended.c */
void ieee754_write_extended (double, uint8_t*);
double ieee754_read_extended (uint8_t*);
#ifdef _MSC_VER
#define FATAL_ERROR(format, ...) \
do \
{ \
fprintf(stderr, format, __VA_ARGS__); \
exit(1); \
} while (0)
#else
#define FATAL_ERROR(format, ...) \
do \
{ \
fprintf(stderr, format, ##__VA_ARGS__); \
exit(1); \
} while (0)
#endif // _MSC_VER
typedef struct {
unsigned long num_samples;
union {
uint8_t *samples8;
uint16_t *samples16;
};
uint8_t midi_note;
uint8_t sample_size;
bool has_loop;
unsigned long loop_offset;
double sample_rate;
unsigned long real_num_samples;
} AifData;
struct Bytes {
unsigned long length;
uint8_t *data;
};
struct Marker {
unsigned short id;
unsigned long position;
// don't care about the name
};
struct Bytes *read_bytearray(const char *filename)
{
struct Bytes *bytes = malloc(sizeof(struct Bytes));
FILE *f = fopen(filename, "rb");
if (!f)
{
FATAL_ERROR("Failed to open '%s' for reading!\n", filename);
}
fseek(f, 0, SEEK_END);
bytes->length = ftell(f);
fseek(f, 0, SEEK_SET);
bytes->data = malloc(bytes->length);
unsigned long read = fread(bytes->data, bytes->length, 1, f);
fclose(f);
if (read <= 0)
{
FATAL_ERROR("Failed to read data from '%s'!\n", filename);
}
return bytes;
}
void write_bytearray(const char *filename, struct Bytes *bytes)
{
FILE *f = fopen(filename, "wb");
if (!f)
{
FATAL_ERROR("Failed to open '%s' for writing!\n", filename);
}
fwrite(bytes->data, bytes->length, 1, f);
fclose(f);
}
void free_bytearray(struct Bytes *bytes)
{
free(bytes->data);
free(bytes);
}
char *get_file_extension(char *filename)
{
char *index = strrchr(filename, '.');
if (!index || index == filename)
{
return NULL;
}
return index + 1;
}
char *new_file_extension(char *filename, char *ext)
{
char *index = strrchr(filename, '.');
if (!index || index == filename)
{
index = filename + strlen(filename);
}
int length = index - filename;
char *new_filename = malloc(length + 1 + strlen(ext) + 1);
if (new_filename)
{
strcpy(new_filename, filename);
new_filename[length] = '.';
strcpy(new_filename + length + 1, ext);
}
return new_filename;
}
void read_aif(struct Bytes *aif, AifData *aif_data)
{
aif_data->has_loop = false;
aif_data->num_samples = 0;
unsigned long pos = 0;
char chunk_name[5]; chunk_name[4] = '\0';
char chunk_type[5]; chunk_type[4] = '\0';
// Check for FORM Chunk
memcpy(chunk_name, &aif->data[pos], 4);
pos += 4;
if (strcmp(chunk_name, "FORM") != 0)
{
FATAL_ERROR("Input .aif file has invalid header Chunk '%s'!\n", chunk_name);
}
// Read size of whole file.
unsigned long whole_chunk_size = aif->data[pos++] << 24;
whole_chunk_size |= (aif->data[pos++] << 16);
whole_chunk_size |= (aif->data[pos++] << 8);
whole_chunk_size |= (uint8_t)aif->data[pos++];
unsigned long expected_whole_chunk_size = aif->length - 8;
if (whole_chunk_size != expected_whole_chunk_size)
{
FATAL_ERROR("FORM Chunk ckSize '%lu' doesn't match actual size '%lu'!\n", whole_chunk_size, expected_whole_chunk_size);
}
// Check for AIFF Form Type
memcpy(chunk_type, &aif->data[pos], 4);
pos += 4;
if (strcmp(chunk_type, "AIFF") != 0)
{
FATAL_ERROR("FORM Type is '%s', but it must be AIFF!", chunk_type);
}
struct Marker *markers = NULL;
unsigned short num_markers = 0, loop_start = 0, loop_end = 0;
unsigned long num_sample_frames = 0;
// Read all the Chunks to populate the AifData struct.
while ((pos + 8) < aif->length)
{
// Read Chunk id
memcpy(chunk_name, &aif->data[pos], 4);
pos += 4;
unsigned long chunk_size = (aif->data[pos++] << 24);
chunk_size |= (aif->data[pos++] << 16);
chunk_size |= (aif->data[pos++] << 8);
chunk_size |= aif->data[pos++];
if ((pos + chunk_size) > aif->length)
{
FATAL_ERROR("%s chunk at 0x%lx reached end of file before finishing\n", chunk_name, pos);
}
if (strcmp(chunk_name, "COMM") == 0)
{
short num_channels = (aif->data[pos++] << 8);
num_channels |= (uint8_t)aif->data[pos++];
if (num_channels != 1)
{
FATAL_ERROR("numChannels (%d) in the COMM Chunk must be 1!\n", num_channels);
}
num_sample_frames = (aif->data[pos++] << 24);
num_sample_frames |= (aif->data[pos++] << 16);
num_sample_frames |= (aif->data[pos++] << 8);
num_sample_frames |= (uint8_t)aif->data[pos++];
aif_data->sample_size = (aif->data[pos++] << 8);
aif_data->sample_size |= (uint8_t)aif->data[pos++];
if (aif_data->sample_size != 8 && aif_data->sample_size != 16)
{
FATAL_ERROR("sampleSize (%d) in the COMM Chunk must be 8 or 16!\n", aif_data->sample_size);
}
double sample_rate = ieee754_read_extended((uint8_t*)(aif->data + pos));
pos += 10;
aif_data->sample_rate = sample_rate;
if (aif_data->num_samples == 0)
{
aif_data->num_samples = num_sample_frames;
}
}
else if (strcmp(chunk_name, "MARK") == 0)
{
num_markers = (aif->data[pos++] << 8);
num_markers |= (uint8_t)aif->data[pos++];
if (markers)
{
FATAL_ERROR("More than one MARK Chunk in file!\n");
}
markers = calloc(num_markers, sizeof(struct Marker));
// Read each marker.
for (int i = 0; i < num_markers; i++)
{
unsigned short marker_id = (aif->data[pos++] << 8);
marker_id |= (uint8_t)aif->data[pos++];
unsigned long marker_position = (aif->data[pos++] << 24);
marker_position |= (aif->data[pos++] << 16);
marker_position |= (aif->data[pos++] << 8);
marker_position |= (uint8_t)aif->data[pos++];
// Marker name is a Pascal-style string.
uint8_t marker_name_size = aif->data[pos++];
// We don't actually need the marker name for anything anymore.
/*char *marker_name = (char *)malloc((marker_name_size + 1) * sizeof(char));
memcpy(marker_name, &aif->data[pos], marker_name_size);
marker_name[marker_name_size] = '\0';*/
pos += marker_name_size + !(marker_name_size & 1);
markers[i].id = marker_id;
markers[i].position = marker_position;
}
}
else if (strcmp(chunk_name, "INST") == 0)
{
uint8_t midi_note = (uint8_t)aif->data[pos++];
aif_data->midi_note = midi_note;
// Skip over data we don't need.
pos += 7;
unsigned short loop_type = (aif->data[pos++] << 8);
loop_type |= (uint8_t)aif->data[pos++];
if (loop_type)
{
loop_start = (aif->data[pos++] << 8);
loop_start |= (uint8_t)aif->data[pos++];
loop_end = (aif->data[pos++] << 8);
loop_end |= (uint8_t)aif->data[pos++];
}
else
{
// Skip NoLooping sustain loop.
pos += 4;
}
// Skip release loop, we don't need it.
pos += 6;
}
else if (strcmp(chunk_name, "SSND") == 0)
{
// Skip offset and blockSize
pos += 8;
unsigned long num_samples = chunk_size - 8;
if (aif_data->sample_size == 8)
{
uint8_t *sample_data = (uint8_t *)malloc(num_samples * sizeof(uint8_t));
memcpy(sample_data, &aif->data[pos], num_samples);
aif_data->samples8 = sample_data;
aif_data->real_num_samples = num_samples;
}
else
{
uint16_t *sample_data = (uint16_t *)malloc(num_samples * sizeof(uint16_t));
uint16_t *sample_data_swapped = (uint16_t *)malloc(num_samples * sizeof(uint16_t));
memcpy(sample_data, &aif->data[pos], num_samples);
for (long unsigned i = 0; i < num_samples; i++)
{
sample_data_swapped[i] = __builtin_bswap16(sample_data[i]);
}
aif_data->samples16 = sample_data_swapped;
aif_data->real_num_samples = num_samples;
free(sample_data);
}
pos += chunk_size - 8;
}
else
{
// Skip over unsupported chunks.
pos += chunk_size;
}
}
if (markers)
{
// Resolve loop points.
struct Marker *cur_marker = markers;
// Grab loop start point.
for (int i = 0; i < num_markers; i++, cur_marker++)
{
if (cur_marker->id == loop_start)
{
aif_data->loop_offset = cur_marker->position;
aif_data->has_loop = true;
break;
}
}
cur_marker = markers;
// Grab loop end point.
for (int i = 0; i < num_markers; i++, cur_marker++)
{
if (cur_marker->id == loop_end)
{
if (cur_marker->position < aif_data->loop_offset) {
aif_data->loop_offset = cur_marker->position;
aif_data->has_loop = true;
}
aif_data->num_samples = cur_marker->position;
break;
}
}
free(markers);
}
}
// This is a table of deltas between sample values in compressed PCM data.
const int gDeltaEncodingTable[] = {
0, 1, 4, 9, 16, 25, 36, 49,
-64, -49, -36, -25, -16, -9, -4, -1,
};
#define POSITIVE_DELTAS_START 0
#define POSITIVE_DELTAS_END 8
#define NEGATIVE_DELTAS_START 8
#define NEGATIVE_DELTAS_END 16
struct Bytes *delta_decompress(struct Bytes *delta, unsigned int expected_length)
{
struct Bytes *pcm = malloc(sizeof(struct Bytes));
pcm->length = expected_length;
pcm->data = malloc(pcm->length + 0x40);
uint8_t hi, lo;
unsigned int i = 0;
unsigned int j = 0;
int k;
int8_t base;
while (i < delta->length)
{
base = (int8_t)delta->data[i++];
pcm->data[j++] = (uint8_t)base;
if (i >= delta->length)
{
break;
}
if (j >= pcm->length)
{
break;
}
lo = delta->data[i] & 0xf;
base += gDeltaEncodingTable[lo];
pcm->data[j++] = base;
i++;
if (i >= delta->length)
{
break;
}
if (j >= pcm->length)
{
break;
}
for (k = 0; k < 31; k++)
{
hi = (delta->data[i] >> 4) & 0xf;
base += gDeltaEncodingTable[hi];
pcm->data[j++] = base;
if (j >= pcm->length)
{
break;
}
lo = delta->data[i] & 0xf;
base += gDeltaEncodingTable[lo];
pcm->data[j++] = base;
i++;
if (i >= delta->length)
{
break;
}
if (j >= pcm->length)
{
break;
}
}
if (j >= pcm->length)
{
break;
}
}
pcm->length = j;
return pcm;
}
#define U8_TO_S8(value) ((value) < 128 ? (value) : (value) - 256)
#define ABS(value) ((value) >= 0 ? (value) : -(value))
int get_delta_index(uint8_t sample, uint8_t prev_sample)
{
int best_error = INT_MAX;
int best_index = -1;
int delta_table_start_index;
int delta_table_end_index;
int sample_signed = U8_TO_S8(sample);
int prev_sample_signed = U8_TO_S8(prev_sample);
// if we're going up (or equal), only choose positive deltas
if (prev_sample_signed <= sample_signed) {
delta_table_start_index = POSITIVE_DELTAS_START;
delta_table_end_index = POSITIVE_DELTAS_END;
} else {
delta_table_start_index = NEGATIVE_DELTAS_START;
delta_table_end_index = NEGATIVE_DELTAS_END;
}
for (int i = delta_table_start_index; i < delta_table_end_index; i++)
{
uint8_t new_sample = prev_sample + gDeltaEncodingTable[i];
int new_sample_signed = U8_TO_S8(new_sample);
int error = ABS(new_sample_signed - sample_signed);
if (error < best_error)
{
best_error = error;
best_index = i;
}
}
return best_index;
}
struct Bytes *delta_compress(struct Bytes *pcm)
{
struct Bytes *delta = malloc(sizeof(struct Bytes));
// estimate the length so we can malloc
int num_blocks = pcm->length / 64;
delta->length = num_blocks * 33;
int extra = pcm->length % 64;
if (extra)
{
delta->length += 1;
extra -= 1;
}
if (extra)
{
delta->length += 1;
extra -= 1;
}
if (extra)
{
delta->length += (extra + 1) / 2;
}
delta->data = malloc(delta->length + 33);
unsigned int i = 0;
unsigned int j = 0;
int k;
uint8_t base;
int delta_index;
while (i < pcm->length)
{
base = pcm->data[i++];
delta->data[j++] = base;
if (i >= pcm->length)
{
break;
}
delta_index = get_delta_index(pcm->data[i++], base);
base += gDeltaEncodingTable[delta_index];
delta->data[j++] = delta_index;
for (k = 0; k < 31; k++)
{
if (i >= pcm->length)
{
break;
}
delta_index = get_delta_index(pcm->data[i++], base);
base += gDeltaEncodingTable[delta_index];
delta->data[j] = (delta_index << 4);
if (i >= pcm->length)
{
break;
}
delta_index = get_delta_index(pcm->data[i++], base);
base += gDeltaEncodingTable[delta_index];
delta->data[j++] |= delta_index;
}
}
delta->length = j;
return delta;
}
#define STORE_U32_LE(dest, value) \
do { \
*(dest) = (value) & 0xff; \
*((dest) + 1) = ((value) >> 8) & 0xff; \
*((dest) + 2) = ((value) >> 16) & 0xff; \
*((dest) + 3) = ((value) >> 24) & 0xff; \
} while (0)
#define LOAD_U32_LE(var, src) \
do { \
(var) = *(src); \
(var) |= (*((src) + 1) << 8); \
(var) |= (*((src) + 2) << 16); \
(var) |= (*((src) + 3) << 24); \
} while (0)
// Reads an .aif file and produces a .pcm file containing an array of 8-bit samples.
void aif2pcm(const char *aif_filename, const char *pcm_filename, bool compress)
{
struct Bytes *aif = read_bytearray(aif_filename);
AifData aif_data = {0};
read_aif(aif, &aif_data);
// Convert 16-bit to 8-bit if necessary
if (aif_data.sample_size == 16)
{
aif_data.real_num_samples /= 2;
uint8_t *converted_samples = malloc(aif_data.real_num_samples * sizeof(uint8_t));
for (unsigned long i = 0; i < aif_data.real_num_samples; i++)
{
converted_samples[i] = aif_data.samples16[i] >> 8;
}
free(aif_data.samples16);
aif_data.samples8 = converted_samples;
}
int header_size = 0x10;
struct Bytes *pcm;
struct Bytes output = {0,0};
if (compress)
{
struct Bytes *input = malloc(sizeof(struct Bytes));
input->data = aif_data.samples8;
input->length = aif_data.real_num_samples;
pcm = delta_compress(input);
free(input);
}
else
{
pcm = malloc(sizeof(struct Bytes));
pcm->data = aif_data.samples8;
pcm->length = aif_data.real_num_samples;
}
output.length = header_size + pcm->length;
output.data = malloc(output.length);
uint32_t pitch_adjust = (uint32_t)(aif_data.sample_rate * 1024);
uint32_t loop_offset = (uint32_t)(aif_data.loop_offset);
uint32_t adjusted_num_samples = (uint32_t)(aif_data.num_samples - 1);
uint32_t flags = 0;
if (aif_data.has_loop) flags |= 0x40000000;
if (compress) flags |= 1;
STORE_U32_LE(output.data + 0, flags);
STORE_U32_LE(output.data + 4, pitch_adjust);
STORE_U32_LE(output.data + 8, loop_offset);
STORE_U32_LE(output.data + 12, adjusted_num_samples);
memcpy(&output.data[header_size], pcm->data, pcm->length);
write_bytearray(pcm_filename, &output);
free(aif->data);
free(aif);
free(pcm);
free(output.data);
free(aif_data.samples8);
}
// Reads a .pcm file containing an array of 8-bit samples and produces an .aif file.
// See http://www-mmsp.ece.mcgill.ca/documents/audioformats/aiff/Docs/AIFF-1.3.pdf for .aif file specification.
void pcm2aif(const char *pcm_filename, const char *aif_filename, uint32_t base_note)
{
struct Bytes *pcm = read_bytearray(pcm_filename);
AifData *aif_data = malloc(sizeof(AifData));
uint32_t flags;
LOAD_U32_LE(flags, pcm->data + 0);
aif_data->has_loop = flags & 0x40000000;
bool compressed = flags & 1;
uint32_t pitch_adjust;
LOAD_U32_LE(pitch_adjust, pcm->data + 4);
aif_data->sample_rate = pitch_adjust / 1024.0;
LOAD_U32_LE(aif_data->loop_offset, pcm->data + 8);
LOAD_U32_LE(aif_data->num_samples, pcm->data + 12);
aif_data->num_samples += 1;
if (compressed)
{
struct Bytes *delta = pcm;
uint8_t *pcm_data = pcm->data;
delta->length -= 0x10;
delta->data += 0x10;
pcm = delta_decompress(delta, aif_data->num_samples);
free(pcm_data);
free(delta);
}
else
{
pcm->length -= 0x10;
pcm->data += 0x10;
}
aif_data->samples8 = malloc(pcm->length);
memcpy(aif_data->samples8, pcm->data, pcm->length);
struct Bytes *aif = malloc(sizeof(struct Bytes));
aif->length = 54 + 60 + pcm->length;
aif->data = malloc(aif->length);
long pos = 0;
// First, write the FORM header chunk.
// FORM Chunk ckID
aif->data[pos++] = 'F';
aif->data[pos++] = 'O';
aif->data[pos++] = 'R';
aif->data[pos++] = 'M';
// FORM Chunk ckSize
unsigned long form_size = pos;
unsigned long data_size = aif->length - 8;
aif->data[pos++] = ((data_size >> 24) & 0xFF);
aif->data[pos++] = ((data_size >> 16) & 0xFF);
aif->data[pos++] = ((data_size >> 8) & 0xFF);
aif->data[pos++] = (data_size & 0xFF);
// FORM Chunk formType
aif->data[pos++] = 'A';
aif->data[pos++] = 'I';
aif->data[pos++] = 'F';
aif->data[pos++] = 'F';
// Next, write the Common Chunk
// Common Chunk ckID
aif->data[pos++] = 'C';
aif->data[pos++] = 'O';
aif->data[pos++] = 'M';
aif->data[pos++] = 'M';
// Common Chunk ckSize
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 18;
// Common Chunk numChannels
aif->data[pos++] = 0;
aif->data[pos++] = 1; // 1 channel
// Common Chunk numSampleFrames
aif->data[pos++] = ((aif_data->num_samples >> 24) & 0xFF);
aif->data[pos++] = ((aif_data->num_samples >> 16) & 0xFF);
aif->data[pos++] = ((aif_data->num_samples >> 8) & 0xFF);
aif->data[pos++] = (aif_data->num_samples & 0xFF);
// Common Chunk sampleSize
aif->data[pos++] = 0;
aif->data[pos++] = 8; // 8 bits per sample
// Common Chunk sampleRate
//double sample_rate = pitch_adjust / 1024.0;
uint8_t sample_rate_buffer[10];
ieee754_write_extended(aif_data->sample_rate, sample_rate_buffer);
for (int i = 0; i < 10; i++)
{
aif->data[pos++] = sample_rate_buffer[i];
}
if (aif_data->has_loop)
{
// Marker Chunk ckID
aif->data[pos++] = 'M';
aif->data[pos++] = 'A';
aif->data[pos++] = 'R';
aif->data[pos++] = 'K';
// Marker Chunk ckSize
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 12 + (aif_data->has_loop ? 12 : 0);
// Marker Chunk numMarkers
aif->data[pos++] = 0;
aif->data[pos++] = (aif_data->has_loop ? 2 : 1);
// Marker loop start
aif->data[pos++] = 0;
aif->data[pos++] = 1; // id = 1
long loop_start = aif_data->loop_offset;
aif->data[pos++] = ((loop_start >> 24) & 0xFF);
aif->data[pos++] = ((loop_start >> 16) & 0xFF);
aif->data[pos++] = ((loop_start >> 8) & 0xFF);
aif->data[pos++] = (loop_start & 0xFF); // position
aif->data[pos++] = 5; // pascal-style string length
aif->data[pos++] = 'S';
aif->data[pos++] = 'T';
aif->data[pos++] = 'A';
aif->data[pos++] = 'R';
aif->data[pos++] = 'T'; // markerName
// Marker loop end
aif->data[pos++] = 0;
aif->data[pos++] = (aif_data->has_loop ? 2 : 1); // id = 2
long loop_end = aif_data->num_samples;
aif->data[pos++] = ((loop_end >> 24) & 0xFF);
aif->data[pos++] = ((loop_end >> 16) & 0xFF);
aif->data[pos++] = ((loop_end >> 8) & 0xFF);
aif->data[pos++] = (loop_end & 0xFF); // position
aif->data[pos++] = 3; // pascal-style string length
aif->data[pos++] = 'E';
aif->data[pos++] = 'N';
aif->data[pos++] = 'D';
}
// Instrument Chunk ckID
aif->data[pos++] = 'I';
aif->data[pos++] = 'N';
aif->data[pos++] = 'S';
aif->data[pos++] = 'T';
// Instrument Chunk ckSize
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 20;
aif->data[pos++] = base_note; // baseNote
aif->data[pos++] = 0; // detune
aif->data[pos++] = 0; // lowNote
aif->data[pos++] = 127; // highNote
aif->data[pos++] = 1; // lowVelocity
aif->data[pos++] = 127; // highVelocity
aif->data[pos++] = 0; // gain (hi)
aif->data[pos++] = 0; // gain (lo)
// Instrument Chunk sustainLoop
aif->data[pos++] = 0;
aif->data[pos++] = 1; // playMode = ForwardLooping
aif->data[pos++] = 0;
aif->data[pos++] = 1; // beginLoop marker id
aif->data[pos++] = 0;
aif->data[pos++] = 2; // endLoop marker id
// Instrument Chunk releaseLoop
aif->data[pos++] = 0;
aif->data[pos++] = 1; // playMode = ForwardLooping
aif->data[pos++] = 0;
aif->data[pos++] = 1; // beginLoop marker id
aif->data[pos++] = 0;
aif->data[pos++] = 2; // endLoop marker id
// Finally, write the Sound Data Chunk
// Sound Data Chunk ckID
aif->data[pos++] = 'S';
aif->data[pos++] = 'S';
aif->data[pos++] = 'N';
aif->data[pos++] = 'D';
// Sound Data Chunk ckSize
unsigned long sound_data_size = pcm->length + 8;
aif->data[pos++] = ((sound_data_size >> 24) & 0xFF);
aif->data[pos++] = ((sound_data_size >> 16) & 0xFF);
aif->data[pos++] = ((sound_data_size >> 8) & 0xFF);
aif->data[pos++] = (sound_data_size & 0xFF);
// Sound Data Chunk offset
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
// Sound Data Chunk blockSize
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
aif->data[pos++] = 0;
// Sound Data Chunk soundData
for (unsigned int i = 0; i < aif_data->loop_offset; i++)
{
aif->data[pos++] = aif_data->samples8[i];
}
int j = 0;
for (unsigned int i = aif_data->loop_offset; i < pcm->length; i++)
{
int pcm_index = aif_data->loop_offset + (j++ % (pcm->length - aif_data->loop_offset));
aif->data[pos++] = aif_data->samples8[pcm_index];
}
aif->length = pos;
// Go back and rewrite ckSize
data_size = aif->length - 8;
aif->data[form_size + 0] = ((data_size >> 24) & 0xFF);
aif->data[form_size + 1] = ((data_size >> 16) & 0xFF);
aif->data[form_size + 2] = ((data_size >> 8) & 0xFF);
aif->data[form_size + 3] = (data_size & 0xFF);
write_bytearray(aif_filename, aif);
free(aif->data);
free(aif);
}
void usage(void)
{
fprintf(stderr, "Usage: aif2pcm bin_file [aif_file]\n");
fprintf(stderr, " aif2pcm aif_file [bin_file] [--compress]\n");
}
int main(int argc, char **argv)
{
if (argc < 2)
{
usage();
exit(1);
}
char *input_file = argv[1];
char *extension = get_file_extension(input_file);
char *output_file;
bool compressed = false;
if (argc > 3)
{
for (int i = 3; i < argc; i++)
{
if (strcmp(argv[i], "--compress") == 0)
{
compressed = true;
}
}
}
if (strcmp(extension, "aif") == 0 || strcmp(extension, "aiff") == 0)
{
if (argc >= 3)
{
output_file = argv[2];
aif2pcm(input_file, output_file, compressed);
}
else
{
output_file = new_file_extension(input_file, "bin");
aif2pcm(input_file, output_file, compressed);
free(output_file);
}
}
else if (strcmp(extension, "bin") == 0)
{
if (argc >= 3)
{
output_file = argv[2];
pcm2aif(input_file, output_file, 60);
}
else
{
output_file = new_file_extension(input_file, "aif");
pcm2aif(input_file, output_file, 60);
free(output_file);
}
}
else
{
FATAL_ERROR("Input file must be .aif or .bin: '%s'\n", input_file);
}
return 0;
}