use crate::bit::BitIndex; use super::super::alu::*; use crate::arm7tdmi::psr::RegPSR; use crate::arm7tdmi::CpuAction; use crate::arm7tdmi::{Addr, Core, CpuMode, CpuState, REG_LR, REG_PC}; use crate::sysbus::SysBus; use crate::Bus; use super::*; #[inline(always)] fn get_bs_op(shift_field: u32) -> BarrelShiftOpCode { BarrelShiftOpCode::from_u8(shift_field.bit_range(5..7) as u8).unwrap() } impl Core { pub fn exec_arm(&mut self, bus: &mut SysBus, insn: &ArmInstruction) -> CpuAction { match insn.fmt { ArmFormat::BranchExchange => self.exec_arm_bx(bus, insn), ArmFormat::BranchLink => self.exec_arm_b_bl(bus, insn), ArmFormat::DataProcessing => self.exec_arm_data_processing(bus, insn), ArmFormat::SoftwareInterrupt => self.exec_arm_swi(bus, insn), ArmFormat::SingleDataTransfer => self.exec_arm_ldr_str(bus, insn), ArmFormat::HalfwordDataTransferImmediateOffset => { self.exec_arm_ldr_str_hs_imm(bus, insn) } ArmFormat::HalfwordDataTransferRegOffset => self.exec_arm_ldr_str_hs_reg(bus, insn), ArmFormat::BlockDataTransfer => self.exec_arm_ldm_stm(bus, insn), ArmFormat::MoveFromStatus => self.exec_arm_mrs(bus, insn), ArmFormat::MoveToStatus => self.exec_arm_transfer_to_status(bus, insn), ArmFormat::MoveToFlags => self.exec_arm_transfer_to_status(bus, insn), ArmFormat::Multiply => self.exec_arm_mul_mla(bus, insn), ArmFormat::MultiplyLong => self.exec_arm_mull_mlal(bus, insn), ArmFormat::SingleDataSwap => self.exec_arm_swp(bus, insn), ArmFormat::Undefined => self.arm_undefined(bus, insn), } } pub fn arm_undefined(&mut self, _: &mut SysBus, insn: &ArmInstruction) -> CpuAction { panic!( "executing undefined arm instruction {:08x} at @{:08x}", insn.raw, insn.pc ) } /// Cycles 2S+1N pub fn exec_arm_b_bl(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { self.S_cycle32(sb, self.pc); if insn.link_flag() { self.set_reg(REG_LR, (insn.pc + (self.word_size() as u32)) & !0b1); } self.pc = (self.pc as i32).wrapping_add(insn.branch_offset()) as u32 & !1; self.reload_pipeline32(sb); CpuAction::FlushPipeline } pub fn branch_exchange(&mut self, sb: &mut SysBus, mut addr: Addr) -> CpuAction { match self.cpsr.state() { CpuState::ARM => self.S_cycle32(sb, self.pc), CpuState::THUMB => self.S_cycle16(sb, self.pc), } if addr.bit(0) { addr = addr & !0x1; self.cpsr.set_state(CpuState::THUMB); self.pc = addr; self.reload_pipeline16(sb); } else { addr = addr & !0x3; self.cpsr.set_state(CpuState::ARM); self.pc = addr; self.reload_pipeline32(sb); } CpuAction::FlushPipeline } /// Cycles 2S+1N pub fn exec_arm_bx(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { self.branch_exchange(sb, self.get_reg(insn.raw.bit_range(0..4) as usize)) } fn move_from_status_register( &mut self, sb: &mut SysBus, rd: usize, is_spsr: bool, ) -> CpuAction { let result = if is_spsr { self.spsr.get() } else { self.cpsr.get() }; self.set_reg(rd, result); self.S_cycle32(sb, self.pc); CpuAction::AdvancePC } pub fn exec_arm_mrs(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { self.move_from_status_register(sb, insn.raw.bit_range(12..16) as usize, insn.spsr_flag()) } #[inline(always)] fn decode_msr_param(&mut self, insn: &ArmInstruction) -> u32 { if insn.raw.bit(25) { let immediate = insn.raw & 0xff; let rotate = 2 * insn.raw.bit_range(8..12); self.ror(immediate, rotate, self.cpsr.C(), false, true) } else { self.get_reg((insn.raw & 0b1111) as usize) } } // #[cfg(feature = "arm7tdmi_dispatch_table")] pub fn exec_arm_transfer_to_status( &mut self, sb: &mut SysBus, insn: &ArmInstruction, ) -> CpuAction { let value = self.decode_msr_param(insn); let f = insn.raw.bit(19); let s = insn.raw.bit(18); let x = insn.raw.bit(17); let c = insn.raw.bit(16); let mut mask = 0; if f { mask |= 0xff << 24; } if s { mask |= 0xff << 16; } if x { mask |= 0xff << 8; } if c { mask |= 0xff << 0; } let is_spsr = insn.spsr_flag(); match self.cpsr.mode() { CpuMode::User => { if is_spsr { panic!("User mode can't access SPSR") } self.cpsr.set_flag_bits(value); } _ => { if is_spsr { self.spsr.set(value); } else { let old_mode = self.cpsr.mode(); let new_psr = RegPSR::new((self.cpsr.get() & !mask) | (value & mask)); let new_mode = new_psr.mode(); if old_mode != new_mode { self.change_mode(old_mode, new_mode); } self.cpsr = new_psr; } } } self.S_cycle32(sb, self.pc); CpuAction::AdvancePC } fn transfer_spsr_mode(&mut self) { let spsr = self.spsr; if self.cpsr.mode() != spsr.mode() { self.change_mode(self.cpsr.mode(), spsr.mode()); } self.cpsr = spsr; } /// Logical/Arithmetic ALU operations /// /// Cycles: 1S+x+y (from GBATEK) /// Add x=1I cycles if Op2 shifted-by-register. Add y=1S+1N cycles if Rd=R15. pub fn exec_arm_data_processing( &mut self, sb: &mut SysBus, insn: &ArmInstruction, ) -> CpuAction { use AluOpCode::*; let raw_insn = insn.raw; self.S_cycle32(sb, self.pc); let rn = raw_insn.bit_range(16..20) as usize; let rd = raw_insn.bit_range(12..16) as usize; let mut op1 = if rn == REG_PC { insn.pc + 8 } else { self.get_reg(rn) }; let mut s_flag = insn.set_cond_flag(); let opcode = insn.opcode(); let op2 = if raw_insn.bit(25) { let immediate = raw_insn & 0xff; let rotate = 2 * raw_insn.bit_range(8..12); // TODO refactor out let bs_carry_in = self.cpsr.C(); self.bs_carry_out = bs_carry_in; self.ror(immediate, rotate, self.cpsr.C(), false, true) } else { let reg = raw_insn & 0xf; let shift_by = if raw_insn.bit(4) { if rn == REG_PC { op1 += 4; } let rs = raw_insn.bit_range(8..12) as usize; ShiftRegisterBy::ByRegister(rs) } else { let amount = raw_insn.bit_range(7..12) as u32; ShiftRegisterBy::ByAmount(amount) }; let shifted_reg = ShiftedRegister { reg: reg as usize, bs_op: get_bs_op(raw_insn), shift_by: shift_by, added: None, }; self.register_shift(&shifted_reg) }; if rd == REG_PC && s_flag { self.transfer_spsr_mode(); s_flag = false; } let carry = self.cpsr.C() as u32; let alu_res = if s_flag { let mut carry = self.bs_carry_out; let mut overflow = self.cpsr.V(); let result = match opcode { AND | TST => op1 & op2, EOR | TEQ => op1 ^ op2, SUB | CMP => self.alu_sub_flags(op1, op2, &mut carry, &mut overflow), RSB => self.alu_sub_flags(op2, op1, &mut carry, &mut overflow), ADD | CMN => self.alu_add_flags(op1, op2, &mut carry, &mut overflow), ADC => self.alu_adc_flags(op1, op2, &mut carry, &mut overflow), SBC => self.alu_sbc_flags(op1, op2, &mut carry, &mut overflow), RSC => self.alu_sbc_flags(op2, op1, &mut carry, &mut overflow), ORR => op1 | op2, MOV => op2, BIC => op1 & (!op2), MVN => !op2, }; self.alu_update_flags(result, opcode.is_arithmetic(), carry, overflow); if opcode.is_setting_flags() { None } else { Some(result) } } else { Some(match opcode { AND => op1 & op2, EOR => op1 ^ op2, SUB => op1.wrapping_sub(op2), RSB => op2.wrapping_sub(op1), ADD => op1.wrapping_add(op2), ADC => op1.wrapping_add(op2).wrapping_add(carry), SBC => op1.wrapping_sub(op2.wrapping_add(1 - carry)), RSC => op2.wrapping_sub(op1.wrapping_add(1 - carry)), ORR => op1 | op2, MOV => op2, BIC => op1 & (!op2), MVN => !op2, _ => panic!("{} should be a PSR transfer", opcode), }) }; let mut result = CpuAction::AdvancePC; if let Some(alu_res) = alu_res { self.set_reg(rd, alu_res as u32); if rd == REG_PC { // T bit might have changed match self.cpsr.state() { CpuState::ARM => self.reload_pipeline32(sb), CpuState::THUMB => self.reload_pipeline16(sb), }; result = CpuAction::FlushPipeline; } } result } /// Memory Load/Store /// Instruction | Cycles | Flags | Expl. /// ------------------------------------------------------------------------------ /// LDR{cond}{B}{T} Rd,<Address> | 1S+1N+1I+y | ---- | Rd=[Rn+/-<offset>] /// STR{cond}{B}{T} Rd,<Address> | 2N | ---- | [Rn+/-<offset>]=Rd /// ------------------------------------------------------------------------------ /// For LDR, add y=1S+1N if Rd=R15. pub fn exec_arm_ldr_str(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { let mut result = CpuAction::AdvancePC; let load = insn.load_flag(); let pre_index = insn.pre_index_flag(); let writeback = insn.write_back_flag(); let base_reg = insn.raw.bit_range(16..20) as usize; let dest_reg = insn.raw.bit_range(12..16) as usize; let mut addr = self.get_reg(base_reg); if base_reg == REG_PC { addr = insn.pc + 8; // prefetching } let offset = self.get_barrel_shifted_value(&insn.ldr_str_offset()); let effective_addr = (addr as i32).wrapping_add(offset as i32) as Addr; // TODO - confirm this let old_mode = self.cpsr.mode(); if !pre_index && writeback { self.change_mode(old_mode, CpuMode::User); } addr = if insn.pre_index_flag() { effective_addr } else { addr }; if load { self.S_cycle32(sb, self.pc); let data = if insn.transfer_size() == 1 { self.N_cycle8(sb, addr); sb.read_8(addr) as u32 } else { self.N_cycle32(sb, addr); self.ldr_word(addr, sb) }; self.set_reg(dest_reg, data); // +1I self.add_cycle(); if dest_reg == REG_PC { self.reload_pipeline32(sb); result = CpuAction::FlushPipeline; } } else { let value = if dest_reg == REG_PC { insn.pc + 12 } else { self.get_reg(dest_reg) }; if insn.transfer_size() == 1 { self.N_cycle8(sb, addr); self.write_8(addr, value as u8, sb); } else { self.N_cycle32(sb, addr); self.write_32(addr & !0x3, value, sb); }; self.N_cycle32(sb, self.pc); } if !load || base_reg != dest_reg { if !pre_index { self.set_reg(base_reg, effective_addr); } else if insn.write_back_flag() { self.set_reg(base_reg, effective_addr); } } if !pre_index && insn.write_back_flag() { self.change_mode(self.cpsr.mode(), old_mode); } result } pub fn exec_arm_ldr_str_hs_reg(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { self.ldr_str_hs( sb, insn, BarrelShifterValue::ShiftedRegister(ShiftedRegister { reg: (insn.raw & 0xf) as usize, shift_by: ShiftRegisterBy::ByAmount(0), bs_op: BarrelShiftOpCode::LSL, added: Some(insn.add_offset_flag()), }), ) } pub fn exec_arm_ldr_str_hs_imm(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { let offset8 = (insn.raw.bit_range(8..12) << 4) + insn.raw.bit_range(0..4); let offset8 = if insn.add_offset_flag() { offset8 } else { (-(offset8 as i32)) as u32 }; self.ldr_str_hs(sb, insn, BarrelShifterValue::ImmediateValue(offset8)) } #[inline(always)] pub fn ldr_str_hs( &mut self, sb: &mut SysBus, insn: &ArmInstruction, offset: BarrelShifterValue, ) -> CpuAction { let mut result = CpuAction::AdvancePC; let load = insn.load_flag(); let pre_index = insn.pre_index_flag(); let writeback = insn.write_back_flag(); let base_reg = insn.raw.bit_range(16..20) as usize; let dest_reg = insn.raw.bit_range(12..16) as usize; let mut addr = self.get_reg(base_reg); if base_reg == REG_PC { addr = insn.pc + 8; // prefetching } let offset = self.get_barrel_shifted_value(&offset); // TODO - confirm this let old_mode = self.cpsr.mode(); if !pre_index && writeback { self.change_mode(old_mode, CpuMode::User); } let effective_addr = (addr as i32).wrapping_add(offset as i32) as Addr; addr = if insn.pre_index_flag() { effective_addr } else { addr }; if load { self.S_cycle32(sb, self.pc); let data = match insn.halfword_data_transfer_type().unwrap() { ArmHalfwordTransferType::SignedByte => { self.N_cycle8(sb, addr); sb.read_8(addr) as u8 as i8 as u32 } ArmHalfwordTransferType::SignedHalfwords => { self.N_cycle16(sb, addr); self.ldr_sign_half(addr, sb) } ArmHalfwordTransferType::UnsignedHalfwords => { self.N_cycle16(sb, addr); self.ldr_half(addr, sb) } }; self.set_reg(dest_reg, data); // +1I self.add_cycle(); if dest_reg == REG_PC { self.reload_pipeline32(sb); result = CpuAction::FlushPipeline; } } else { let value = if dest_reg == REG_PC { insn.pc + 12 } else { self.get_reg(dest_reg) }; match insn.halfword_data_transfer_type().unwrap() { ArmHalfwordTransferType::UnsignedHalfwords => { self.N_cycle32(sb, addr); self.write_16(addr, value as u16, sb); self.N_cycle32(sb, self.pc); } _ => panic!("invalid HS flags for L=0"), }; } if !load || base_reg != dest_reg { if !pre_index { self.set_reg(base_reg, effective_addr); } else if insn.write_back_flag() { self.set_reg(base_reg, effective_addr); } } result } pub fn exec_arm_ldm_stm(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { let mut result = CpuAction::AdvancePC; let mut full = insn.pre_index_flag(); let ascending = insn.add_offset_flag(); let s_flag = insn.raw.bit(22); let is_load = insn.load_flag(); let mut writeback = insn.write_back_flag(); let base_reg = insn.raw.bit_range(16..20) as usize; let mut base_addr = self.get_reg(base_reg); let rlist = insn.register_list(); if s_flag { match self.cpsr.mode() { CpuMode::User | CpuMode::System => { panic!("LDM/STM with S bit in unprivileged mode") } _ => {} }; } let user_bank_transfer = if s_flag { if is_load { !rlist.bit(REG_PC) } else { true } } else { false }; let old_mode = self.cpsr.mode(); if user_bank_transfer { self.change_mode(old_mode, CpuMode::User); } let psr_transfer = s_flag & is_load & rlist.bit(REG_PC); let rlist_count = rlist.count_ones(); let old_base = base_addr; if rlist != 0 && !ascending { base_addr = base_addr.wrapping_sub(rlist_count * 4); if writeback { self.set_reg(base_reg, base_addr); writeback = false; } full = !full; } let mut addr = base_addr; if rlist != 0 { if is_load { self.add_cycle(); self.N_cycle32(sb, self.pc); for r in 0..16 { if rlist.bit(r) { if r == base_reg { writeback = false; } if full { addr = addr.wrapping_add(4); } let val = sb.read_32(addr); self.S_cycle32(sb, self.pc); self.set_reg(r, val); if r == REG_PC { if psr_transfer { self.transfer_spsr_mode(); } self.reload_pipeline32(sb); result = CpuAction::FlushPipeline; } if !full { addr = addr.wrapping_add(4); } } } } else { let mut first = true; for r in 0..16 { if rlist.bit(r) { let val = if r != base_reg { if r == REG_PC { insn.pc + 12 } else { self.get_reg(r) } } else { if first { old_base } else { let x = rlist_count * 4; if ascending { old_base + x } else { old_base - x } } }; if full { addr = addr.wrapping_add(4); } if first { self.N_cycle32(sb, addr); first = false; } else { self.S_cycle32(sb, addr); } self.write_32(addr, val, sb); if !full { addr = addr.wrapping_add(4); } } } self.N_cycle32(sb, self.pc); } } else { if is_load { let val = self.ldr_word(addr, sb); self.set_reg(REG_PC, val & !3); self.reload_pipeline32(sb); result = CpuAction::FlushPipeline; } else { self.write_32(addr, self.pc + 4, sb); } addr = addr.wrapping_add(0x40); } if user_bank_transfer { self.change_mode(self.cpsr.mode(), old_mode); } if writeback { self.set_reg(base_reg, addr as u32); } result } pub fn exec_arm_mul_mla(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { let rd = insn.raw.bit_range(16..20) as usize; let rn = insn.raw.bit_range(12..16) as usize; let rs = insn.rs(); let rm = insn.rm(); // // check validity // assert!(!(REG_PC == rd || REG_PC == rn || REG_PC == rs || REG_PC == rm)); // assert!(rd != rm); let op1 = self.get_reg(rm); let op2 = self.get_reg(rs); let mut result = op1.wrapping_mul(op2); if insn.accumulate_flag() { result = result.wrapping_add(self.get_reg(rn)); self.add_cycle(); } self.set_reg(rd, result); let m = self.get_required_multipiler_array_cycles(op2); for _ in 0..m { self.add_cycle(); } if insn.set_cond_flag() { self.cpsr.set_N((result as i32) < 0); self.cpsr.set_Z(result == 0); self.cpsr.set_C(false); self.cpsr.set_V(false); } self.S_cycle32(sb, self.pc); CpuAction::AdvancePC } pub fn exec_arm_mull_mlal(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { let rd_hi = insn.rd_hi(); let rd_lo = insn.rd_lo(); let rs = insn.rs(); let rm = insn.rm(); let op1 = self.get_reg(rm); let op2 = self.get_reg(rs); let mut result: u64 = if insn.u_flag() { // signed (op1 as i32 as i64).wrapping_mul(op2 as i32 as i64) as u64 } else { (op1 as u64).wrapping_mul(op2 as u64) }; self.add_cycle(); if insn.accumulate_flag() { let hi = self.get_reg(rd_hi) as u64; let lo = self.get_reg(rd_lo) as u64; result = result.wrapping_add(hi << 32 | lo); self.add_cycle(); } self.set_reg(rd_hi, (result >> 32) as i32 as u32); self.set_reg(rd_lo, (result & 0xffffffff) as i32 as u32); let m = self.get_required_multipiler_array_cycles(self.get_reg(rs)); for _ in 0..m { self.add_cycle(); } if insn.set_cond_flag() { self.cpsr.set_N(result.bit(63)); self.cpsr.set_Z(result == 0); self.cpsr.set_C(false); self.cpsr.set_V(false); } self.S_cycle32(sb, self.pc); CpuAction::AdvancePC } pub fn exec_arm_swp(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { let base_addr = self.get_reg(insn.raw.bit_range(16..20) as usize); let rd = insn.raw.bit_range(12..16) as usize; if insn.transfer_size() == 1 { let t = sb.read_8(base_addr); self.N_cycle8(sb, base_addr); sb.write_8(base_addr, self.get_reg(insn.rm()) as u8); self.S_cycle8(sb, base_addr); self.set_reg(rd, t as u32); } else { let t = self.ldr_word(base_addr, sb); self.N_cycle32(sb, base_addr); self.write_32(base_addr, self.get_reg(insn.rm()), sb); self.S_cycle32(sb, base_addr); self.set_reg(rd, t as u32); } self.add_cycle(); self.N_cycle32(sb, self.pc); CpuAction::AdvancePC } pub fn exec_arm_swi(&mut self, sb: &mut SysBus, insn: &ArmInstruction) -> CpuAction { self.software_interrupt(sb, self.pc - 4, insn.swi_comment()); CpuAction::FlushPipeline } }