use std::fmt; use ansi_term::{Colour, Style}; use num_traits::Num; pub use super::exception::Exception; use super::{ arm::*, bus::{Bus, MemoryAccess, MemoryAccessType, MemoryAccessType::*, MemoryAccessWidth::*}, psr::RegPSR, reg_string, thumb::ThumbInstruction, Addr, CpuMode, CpuResult, CpuState, DecodedInstruction, InstructionDecoder, }; #[derive(Debug, PartialEq)] enum PipelineState { Refill1, Refill2, Execute, } impl Default for PipelineState { fn default() -> PipelineState { PipelineState::Refill1 } } #[derive(Debug, Default)] pub struct Core { pub pc: u32, pub gpr: [u32; 15], // r13 and r14 are banked for all modes. System&User mode share them pub gpr_banked_r13: [u32; 6], pub gpr_banked_r14: [u32; 6], // r8-r12 are banked for fiq mode pub gpr_banked_old_r8_12: [u32; 5], pub gpr_banked_fiq_r8_12: [u32; 5], pub cpsr: RegPSR, pub spsr: [RegPSR; 5], pipeline_state: PipelineState, fetched_arm: u32, decoded_arm: u32, fetched_thumb: u16, decoded_thumb: u16, last_executed: Option, pub cycles: usize, // store the gpr before executing an instruction to show diff in the Display impl gpr_previous: [u32; 15], memreq: Addr, pub verbose: bool, } pub type CpuExecResult = CpuResult<()>; impl Core { pub fn new() -> Core { Core { memreq: 0xffff_0000, // set memreq to an invalid addr so the first load cycle will be non-sequential ..Default::default() } } pub fn set_verbose(&mut self, v: bool) { self.verbose = v; } pub fn get_reg(&self, reg_num: usize) -> u32 { match reg_num { 0...14 => self.gpr[reg_num], 15 => self.pc, _ => panic!("invalid register"), } } pub fn set_reg(&mut self, reg_num: usize, val: u32) { match reg_num { 0...14 => self.gpr[reg_num] = val, 15 => self.pc = val & !1, _ => panic!("invalid register"), } } pub fn get_registers(&self) -> [u32; 15] { self.gpr.clone() } fn map_banked_registers(&mut self, curr_mode: CpuMode, new_mode: CpuMode) { let next_index = new_mode.bank_index(); let curr_index = curr_mode.bank_index(); self.gpr_banked_r13[curr_index] = self.gpr[13]; self.gpr_banked_r14[curr_index] = self.gpr[14]; self.gpr[13] = self.gpr_banked_r13[next_index]; self.gpr[14] = self.gpr_banked_r14[next_index]; if new_mode == CpuMode::Fiq { for r in 0..5 { self.gpr_banked_old_r8_12[r] = self.gpr[r + 8]; self.gpr[r + 8] = self.gpr_banked_fiq_r8_12[r]; } } else if curr_mode == CpuMode::Fiq { for r in 0..5 { self.gpr_banked_fiq_r8_12[r] = self.gpr[r + 8]; self.gpr[r + 8] = self.gpr_banked_old_r8_12[r]; } } } pub fn change_mode(&mut self, new_mode: CpuMode) { let curr_mode = self.cpsr.mode(); // Copy CPSR to SPSR_mode if let Some(index) = new_mode.spsr_index() { self.spsr[index] = self.cpsr; } self.map_banked_registers(curr_mode, new_mode); let next_index = new_mode.bank_index(); self.gpr_banked_r14[next_index] = self .pc .wrapping_sub(self.word_size() as u32) .wrapping_add(4); } /// Resets the cpu pub fn reset(&mut self) { self.exception(Exception::Reset); } pub fn word_size(&self) -> usize { match self.cpsr.state() { CpuState::ARM => 4, CpuState::THUMB => 2, } } fn advance_pc(&mut self) { self.pc = self.pc.wrapping_add(self.word_size() as u32) } pub fn cycles(&self) -> usize { self.cycles } pub fn add_cycle(&mut self) { // println!(" total: {}", self.cycles); self.cycles += 1; } pub fn add_cycles(&mut self, addr: Addr, bus: &Bus, access: MemoryAccess) { // println!(" total: {}", addr, access, self.cycles); self.cycles += bus.get_cycles(addr, access); } pub fn cycle_type(&self, addr: Addr) -> MemoryAccessType { if addr == self.memreq || addr == self.memreq.wrapping_add(self.word_size() as Addr) { Seq } else { NonSeq } } pub fn get_required_multipiler_array_cycles(&self, rs: i32) -> usize { if rs & 0xff == rs { 1 } else if rs & 0xffff == rs { 2 } else if rs & 0xffffff == rs { 3 } else { 4 } } pub fn load_32(&mut self, addr: Addr, bus: &mut Bus) -> u32 { self.add_cycles(addr, bus, self.cycle_type(addr) + MemoryAccess32); self.memreq = addr; bus.read_32(addr) } pub fn load_16(&mut self, addr: Addr, bus: &mut Bus) -> u16 { let cycle_type = self.cycle_type(addr); self.add_cycles(addr, bus, cycle_type + MemoryAccess16); self.memreq = addr; bus.read_16(addr) } pub fn load_8(&mut self, addr: Addr, bus: &mut Bus) -> u8 { let cycle_type = self.cycle_type(addr); self.add_cycles(addr, bus, cycle_type + MemoryAccess8); self.memreq = addr; bus.read_8(addr) } pub fn store_32(&mut self, addr: Addr, value: u32, bus: &mut Bus) { let cycle_type = self.cycle_type(addr); self.add_cycles(addr, bus, cycle_type + MemoryAccess32); self.memreq = addr; bus.write_32(addr, value); } pub fn store_16(&mut self, addr: Addr, value: u16, bus: &mut Bus) { let cycle_type = self.cycle_type(addr); self.add_cycles(addr, bus, cycle_type + MemoryAccess16); self.memreq = addr; bus.write_16(addr, value); } pub fn store_8(&mut self, addr: Addr, value: u8, bus: &mut Bus) { let cycle_type = self.cycle_type(addr); self.add_cycles(addr, bus, cycle_type + MemoryAccess8); self.memreq = addr; bus.write_8(addr, value); } pub fn check_arm_cond(&self, cond: ArmCond) -> bool { use ArmCond::*; match cond { EQ => self.cpsr.Z(), NE => !self.cpsr.Z(), HS => self.cpsr.C(), LO => !self.cpsr.C(), MI => self.cpsr.N(), PL => !self.cpsr.N(), VS => self.cpsr.V(), VC => !self.cpsr.V(), HI => self.cpsr.C() && !self.cpsr.Z(), LS => !self.cpsr.C() || self.cpsr.Z(), GE => self.cpsr.N() == self.cpsr.V(), LT => self.cpsr.N() != self.cpsr.V(), GT => !self.cpsr.Z() && (self.cpsr.N() == self.cpsr.V()), LE => self.cpsr.Z() || (self.cpsr.N() != self.cpsr.V()), AL => true, } } fn step_arm_exec(&mut self, insn: u32, sb: &mut Bus) -> CpuResult<()> { let pc = self.pc; match self.pipeline_state { PipelineState::Refill1 => { self.pc = pc.wrapping_add(4); self.pipeline_state = PipelineState::Refill2; } PipelineState::Refill2 => { self.pc = pc.wrapping_add(4); self.pipeline_state = PipelineState::Execute; } PipelineState::Execute => { let insn = ArmInstruction::decode(insn, self.pc.wrapping_sub(8))?; self.gpr_previous = self.get_registers(); self.exec_arm(sb, insn)?; if !self.did_pipeline_flush() { self.pc = pc.wrapping_add(4); } self.last_executed = Some(DecodedInstruction::Arm(insn)); } } Ok(()) } fn arm(&mut self, sb: &mut Bus) -> CpuResult<()> { let pc = self.pc; // fetch let fetched_now = self.load_32(pc, sb); let executed_now = self.decoded_arm; // decode self.decoded_arm = self.fetched_arm; self.fetched_arm = fetched_now; // execute self.step_arm_exec(executed_now, sb)?; Ok(()) } pub fn did_pipeline_flush(&self) -> bool { self.pipeline_state == PipelineState::Refill1 } fn step_thumb_exec(&mut self, insn: u16, sb: &mut Bus) -> CpuResult<()> { let pc = self.pc; match self.pipeline_state { PipelineState::Refill1 => { self.pc = pc.wrapping_add(2); self.pipeline_state = PipelineState::Refill2; } PipelineState::Refill2 => { self.pc = pc.wrapping_add(2); self.pipeline_state = PipelineState::Execute; } PipelineState::Execute => { let insn = ThumbInstruction::decode(insn, self.pc.wrapping_sub(4))?; self.gpr_previous = self.get_registers(); self.exec_thumb(sb, insn)?; if !self.did_pipeline_flush() { self.pc = pc.wrapping_add(2); } self.last_executed = Some(DecodedInstruction::Thumb(insn)); } } Ok(()) } fn thumb(&mut self, sb: &mut Bus) -> CpuResult<()> { let pc = self.pc; // fetch let fetched_now = self.load_16(pc, sb); let executed_now = self.decoded_thumb; // decode self.decoded_thumb = self.fetched_thumb; self.fetched_thumb = fetched_now; // execute self.step_thumb_exec(executed_now, sb)?; Ok(()) } pub fn flush_pipeline(&mut self) { self.pipeline_state = PipelineState::Refill1; } /// Perform a pipeline step /// If an instruction was executed in this step, return it. pub fn step(&mut self, bus: &mut Bus) -> CpuResult<()> { match self.cpsr.state() { CpuState::ARM => self.arm(bus), CpuState::THUMB => self.thumb(bus), } } /// Get's the address of the next instruction that is going to be executed pub fn get_next_pc(&self) -> Addr { let insn_size = self.word_size() as u32; match self.pipeline_state { PipelineState::Refill1 => self.pc, PipelineState::Refill2 => self.pc - insn_size, PipelineState::Execute => self.pc - 2 * insn_size, } } /// A step that returns only once an instruction was executed. /// Returns the address of PC before executing an instruction, /// and the address of the next instruction to be executed; pub fn step_one(&mut self, bus: &mut Bus) -> CpuResult { loop { match self.pipeline_state { PipelineState::Execute => { self.step(bus)?; return Ok(self.last_executed.unwrap()); } _ => { self.step(bus)?; } } } } } impl fmt::Display for Core { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { writeln!(f, "ARM7TDMI Core Status:")?; writeln!(f, "\tCycles: {}", self.cycles)?; writeln!(f, "\tCPSR: {}", self.cpsr)?; writeln!(f, "\tGeneral Purpose Registers:")?; let reg_normal_style = Style::new().bold(); let reg_dirty_style = Colour::Black.bold().on(Colour::Yellow); let gpr = self.get_registers(); for i in 0..15 { let mut reg_name = reg_string(i).to_string(); reg_name.make_ascii_uppercase(); let style = if gpr[i] != self.gpr_previous[i] { ®_dirty_style } else { ®_normal_style }; let entry = format!("\t{:-3} = 0x{:08x}", reg_name, gpr[i]); write!( f, "{}{}", style.paint(entry), if (i + 1) % 4 == 0 { "\n" } else { "" } )?; } let pc = format!("\tPC = 0x{:08x}", self.get_next_pc()); writeln!(f, "{}", reg_normal_style.paint(pc)) } }