This repository has been archived on 2024-12-14. You can view files and clone it, but cannot push or open issues or pull requests.
rustboyadvance-ng/rustboyadvance-core/src/core/sound/mod.rs
Michel Heily 884f39ca8f Refactor workspace structure
Former-commit-id: d6ab90563fa209b431661086f9ec2672bda02a96
2020-04-11 16:06:34 +03:00

390 lines
12 KiB
Rust

use std::cell::RefCell;
use std::rc::Rc;
use bit::BitIndex;
use serde::{Deserialize, Serialize};
use super::dma::DmaController;
use super::iodev::consts::*;
use crate::{AudioInterface, StereoSample};
mod fifo;
use fifo::SoundFifo;
mod dsp;
use dsp::{CosineResampler, Resampler};
const DMG_RATIOS: [f32; 4] = [0.25, 0.5, 1.0, 0.0];
const DMA_TIMERS: [usize; 2] = [0, 1];
const DUTY_RATIOS: [f32; 4] = [0.125, 0.25, 0.5, 0.75];
#[derive(Serialize, Deserialize, Clone, Debug)]
struct DmaSoundChannel {
value: i8,
volume_shift: i16,
enable_right: bool,
enable_left: bool,
timer_select: usize,
fifo: SoundFifo,
}
impl DmaSoundChannel {
fn is_stereo_channel_enabled(&self, channel: usize) -> bool {
match channel {
0 => self.enable_left,
1 => self.enable_right,
_ => unreachable!(),
}
}
}
impl Default for DmaSoundChannel {
fn default() -> DmaSoundChannel {
DmaSoundChannel {
volume_shift: 0,
value: 0,
enable_right: false,
enable_left: false,
timer_select: 0,
fifo: SoundFifo::new(),
}
}
}
const REG_FIFO_A_L: u32 = REG_FIFO_A;
const REG_FIFO_A_H: u32 = REG_FIFO_A + 2;
const REG_FIFO_B_L: u32 = REG_FIFO_B;
const REG_FIFO_B_H: u32 = REG_FIFO_B + 2;
type AudioDeviceRcRefCell = Rc<RefCell<dyn AudioInterface>>;
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct SoundController {
cycles: usize, // cycles count when we last provided a new sample.
mse: bool,
left_volume: usize,
left_sqr1: bool,
left_sqr2: bool,
left_wave: bool,
left_noise: bool,
right_volume: usize,
right_sqr1: bool,
right_sqr2: bool,
right_wave: bool,
right_noise: bool,
dmg_volume_ratio: f32,
sqr1_rate: usize,
sqr1_timed: bool,
sqr1_length: f32,
sqr1_duty: f32,
sqr1_step_time: usize,
sqr1_step_increase: bool,
sqr1_initial_vol: usize,
sqr1_cur_vol: usize,
sound_bias: u16,
sample_rate: f32,
cycles_per_sample: usize,
dma_sound: [DmaSoundChannel; 2],
resampler: CosineResampler,
output_buffer: Vec<StereoSample<f32>>,
}
impl SoundController {
pub fn new(audio_device_sample_rate: f32) -> SoundController {
let resampler = CosineResampler::new(32768_f32, audio_device_sample_rate);
SoundController {
cycles: 0,
mse: false,
left_volume: 0,
left_sqr1: false,
left_sqr2: false,
left_wave: false,
left_noise: false,
right_volume: 0,
right_sqr1: false,
right_sqr2: false,
right_wave: false,
right_noise: false,
dmg_volume_ratio: 0.0,
sqr1_rate: 0,
sqr1_timed: false,
sqr1_length: 0.0,
sqr1_duty: DUTY_RATIOS[0],
sqr1_step_time: 0,
sqr1_step_increase: false,
sqr1_initial_vol: 0,
sqr1_cur_vol: 0,
sound_bias: 0x200,
sample_rate: 32_768f32,
cycles_per_sample: 512,
dma_sound: [Default::default(), Default::default()],
resampler: resampler,
output_buffer: Vec::with_capacity(1024),
}
}
pub fn handle_read(&self, io_addr: u32) -> u16 {
let value = match io_addr {
REG_SOUNDCNT_X => cbit(7, self.mse),
REG_SOUNDCNT_L => {
self.left_volume as u16
| (self.right_volume as u16) << 4
| cbit(8, self.left_sqr1)
| cbit(9, self.left_sqr2)
| cbit(10, self.left_wave)
| cbit(11, self.left_noise)
| cbit(12, self.right_sqr1)
| cbit(13, self.right_sqr2)
| cbit(14, self.right_wave)
| cbit(15, self.right_noise)
}
REG_SOUNDCNT_H => {
DMG_RATIOS
.iter()
.position(|&f| f == self.dmg_volume_ratio)
.expect("bad dmg_volume_ratio!") as u16
| cbit(2, self.dma_sound[0].volume_shift == 1)
| cbit(3, self.dma_sound[1].volume_shift == 1)
| cbit(8, self.dma_sound[0].enable_right)
| cbit(9, self.dma_sound[0].enable_left)
| cbit(10, self.dma_sound[0].timer_select != 0)
| cbit(12, self.dma_sound[1].enable_right)
| cbit(13, self.dma_sound[1].enable_left)
| cbit(14, self.dma_sound[1].timer_select != 0)
}
REG_SOUNDBIAS => self.sound_bias,
_ => {
// println!(
// "Unimplemented read from {:x} {}",
// io_addr,
// io_reg_string(io_addr)
// );
0
}
};
// println!(
// "Read {} ({:08x}) = {:04x}",
// io_reg_string(io_addr),
// io_addr,
// value
// );
value
}
pub fn handle_write(&mut self, io_addr: u32, value: u16) {
if io_addr == REG_SOUNDCNT_X {
if value & bit(7) != 0 {
if !self.mse {
info!("MSE enabled!");
self.mse = true;
}
} else {
if self.mse {
info!("MSE disabled!");
self.mse = false;
}
}
// other fields of this register are read-only anyway, ignore them.
return;
}
// TODO - figure out which writes should be disabled when MSE is off
// if !self.mse {
// warn!("MSE disabled, refusing to write");
// return;
// }
match io_addr {
REG_SOUNDCNT_L => {
self.left_volume = value.bit_range(0..2) as usize;
self.right_volume = value.bit_range(4..6) as usize;
self.left_sqr1 = value.bit(8);
self.left_sqr2 = value.bit(9);
self.left_wave = value.bit(10);
self.left_noise = value.bit(11);
self.right_sqr1 = value.bit(12);
self.right_sqr2 = value.bit(13);
self.right_wave = value.bit(14);
self.right_noise = value.bit(15);
}
REG_SOUNDCNT_H => {
self.dmg_volume_ratio = DMG_RATIOS[value.bit_range(0..1) as usize];
self.dma_sound[0].volume_shift = value.bit(2) as i16;
self.dma_sound[1].volume_shift = value.bit(3) as i16;
self.dma_sound[0].enable_right = value.bit(8);
self.dma_sound[0].enable_left = value.bit(9);
self.dma_sound[0].timer_select = DMA_TIMERS[value.bit(10) as usize];
self.dma_sound[1].enable_right = value.bit(12);
self.dma_sound[1].enable_left = value.bit(13);
self.dma_sound[1].timer_select = DMA_TIMERS[value.bit(14) as usize];
if value.bit(11) {
self.dma_sound[0].fifo.reset();
}
if value.bit(15) {
self.dma_sound[1].fifo.reset();
}
}
REG_SOUND1CNT_H => {
self.sqr1_length = (64 - value.bit_range(0..5) as usize) as f32 / 256.0;
self.sqr1_duty = DUTY_RATIOS[value.bit_range(6..7) as usize];
self.sqr1_step_time = value.bit_range(8..10) as usize;
self.sqr1_step_increase = value.bit(11);
self.sqr1_initial_vol = value.bit_range(12..15) as usize;
}
REG_SOUND1CNT_X => {
self.sqr1_rate = value.bit_range(0..10) as usize;
self.sqr1_timed = value.bit(14);
if value.bit(15) {
self.sqr1_cur_vol = self.sqr1_initial_vol;
}
}
REG_FIFO_A_L | REG_FIFO_A_H => {
self.dma_sound[0].fifo.write((value & 0xff) as i8);
self.dma_sound[0].fifo.write(((value >> 8) & 0xff) as i8);
}
REG_FIFO_B_L | REG_FIFO_B_H => {
self.dma_sound[1].fifo.write((value & 0xff) as i8);
self.dma_sound[1].fifo.write(((value >> 8) & 0xff) as i8);
}
REG_SOUNDBIAS => {
self.sound_bias = value & 0xc3fe;
let resolution = self.sound_bias.bit_range(14..16) as usize;
self.sample_rate = (32768 << resolution) as f32;
if self.sample_rate != self.resampler.in_freq {
self.resampler.in_freq = self.sample_rate;
}
self.cycles_per_sample = 512 >> resolution;
}
_ => {
// println!(
// "Unimplemented write to {:x} {}",
// io_addr,
// io_reg_string(io_addr)
// );
}
}
}
pub fn write_fifo(&mut self, id: usize, val: i8) {
assert!(id == 0 || id == 1);
self.dma_sound[id].fifo.write(val);
}
pub fn handle_timer_overflow(
&mut self,
dmac: &mut DmaController,
timer_id: usize,
_num_overflows: usize,
) {
if !self.mse {
return;
}
const FIFO_INDEX_TO_REG: [u32; 2] = [REG_FIFO_A, REG_FIFO_B];
for fifo in 0..2 {
let dma = &mut self.dma_sound[fifo];
if timer_id == dma.timer_select {
dma.value = dma.fifo.read();
if dma.fifo.count() <= 16 {
dmac.notify_sound_fifo(FIFO_INDEX_TO_REG[fifo]);
}
}
}
}
pub fn update(
&mut self,
cycles: usize,
cycles_to_next_event: &mut usize,
audio_device: &AudioDeviceRcRefCell,
) {
self.cycles += cycles;
while self.cycles >= self.cycles_per_sample {
self.cycles -= self.cycles_per_sample;
// time to push a new sample!
let mut sample = [0f32; 2];
for channel in 0..=1 {
let mut dma_sample = 0;
for dma in &mut self.dma_sound {
if dma.is_stereo_channel_enabled(channel) {
let value = dma.value as i16;
dma_sample += value * (2 << dma.volume_shift);
}
}
apply_bias(&mut dma_sample, self.sound_bias.bit_range(0..10) as i16);
sample[channel] = dma_sample as i32 as f32;
}
let stereo_sample = (sample[0], sample[1]);
self.resampler.feed(stereo_sample, &mut self.output_buffer);
let mut audio = audio_device.borrow_mut();
self.output_buffer.drain(..).for_each(|(left, right)| {
audio.push_sample((
(left.round() as i16) * (std::i16::MAX / 512),
(right.round() as i16) * (std::i16::MAX / 512),
));
});
}
if self.cycles_per_sample < *cycles_to_next_event {
*cycles_to_next_event = self.cycles_per_sample;
}
}
}
#[inline(always)]
fn apply_bias(sample: &mut i16, level: i16) {
let mut s = *sample;
s += level;
// clamp
if s > 0x3ff {
s = 0x3ff;
} else if s < 0 {
s = 0;
}
s -= level;
*sample = s;
}
// TODO move
fn cbit(idx: u8, value: bool) -> u16 {
if value {
1 << idx
} else {
0
}
}
// TODO mvoe
fn bit(idx: u8) -> u16 {
1 << idx
}